
Palpable Assemblies: Dynamic Service Composition for Ubiquitous Computing

Mads Ingstrup and Klaus Marius Hansen

Department of Computer Science, University of Aarhus
ingstrup@daimi.au.dk, klaus.m.hansen@daimi.au.dk

Abstract

An important characteristic of ubiquitous computing is
that the computational services in our environment are en-
visioned to be far more interconnectable than today. This
means it should be possible to combine them to suit the
purpose at hand at any given time. However, given a par-
ticular combination of services, there are numerable com-
bined behaviours that could be meaningful. Furthermore,
ubiquitous computing is often characterized by dynamically
changing, heterogeneous combinations of services. It is
therefore necessary to be able to specify the desired behav-
ior and to be able to switch dynamically and easily between
several such behaviours. Assemblies, as a concept in ubiq-
uitous computing, has been suggested as a mechanism to
represent a set of services and their behavior.

After summarising the use-inspired notion of an assem-
bly, this paper (1) clarifies the concept from a software engi-
neering perspective, arguing that an assembly is both an ar-
chitectural connector and a component (2) that an assembly
should have a programmatic representation (3) provides a
discussion of what it should comprise, based on realistic ex-
amples grounded in participatory design (4) the challenges
facing the adoption of the concept, and finally (5) shows
that a particular suggestion for its implementation based
on publish/subscribe is architecturally realizable.

1. Introduction

When the way we use computers now seems well on its
way towards the vision of ubiquitous computing [21], it can
partly be ascribed to the hardware that makes it possible
in the first place. Stationary computers account for only
a fraction of the microprocessors in use [22]—the by far
largest share are embedded processors in cars, dishwashers,
TVs, cellphones, DVD players and other appliances. Why,
then, does it not feel quite like we live in the world Mark
Weiser described back in ’91 ?

An important reason is arguably that the true potential of
all these microprocessors is only realized once the software
running on them becomes interconnected. Instead of a de-
vice being just a cellphone, it should be possible to use it

as a generic means of connectivity, being combinable with
a camera so that pictures are automatically uploaded to a
server at the home office. The camera should be combin-
able with the TV, and the TV, in turn, should be applicable
as a general purpose display.

The notion of an assembly has been proposed to describe
such dynamic combinations of devices and services in the
PalCom project1; as such it embodies both software and
physical concepts of composition and de-composition [15].
In particular, it supports composition of heterogeneous ser-
vices and highly dynamic changes in which services are
available; properties which are characteristic of ubiquitous
computing.

The purpose of assemblies has primarily been that ofde-
scribing the use of technologies. Therefore an assembly is
a use-oriented concept: a combination of computational de-
vices or services that is considered a conceptual whole by
its user. The subject of this paper is howassembliesshould
be realised programatically. Specifically, the contribution
of this paper is twofold:

First, to discuss the abstractions used to comprehend
such combinations of devices, assemblies, as are inherent to
pervasive and ubiquitous computing. People, whether users
or programmers, conceive of and understand the world us-
ing concepts [8, pp. 279] and the aptness of the concepts
determine how easily something is made sense of. Focus-
ing on the realisation of assemblies in software, the main
perspective here is how programmers should understand as-
semblies. To that end the concept is clarified by relating it
to the architectural abstractions of components and connec-
tors. The proposition is that assemblies, conceptually, are
both.

Second, it is argued that the concept of an assembly
should be realised through an explicit programmatic con-
struction that represents it at program-time and at runtime.
The success of object orientation has already established the
advantage of using the same concepts to express programs
as are used to think about their problem and application do-
mains. The intuition behind a programmatic representation
for assemblies is to use similar constructs to express assem-
blies as are used to think about them.

To demonstrate both this point and the feasibility of

1http://www.ist-palcom.org



mixing components and connectors, an architectural pro-
totype [4] has been implemented. It exemplifies assem-
blies and shows that the idea of a combined component and
connector is architecturally realizable, at least when using
topic-based publish/subscribe for intercomponent commu-
nication. The publish/subscribe communication paradigm
is a special case of event-based communication in which
events are routed from publishers to subscribers based on
specific forms of subscriptions [7]. In topic-based pub-
lish/subscribe, events are published to particular named
topics and routed to subscribers which have subscriptions
matching the topic. In general, using publish/subscribe in
ubiquitous computing is interesting in that it provides a flex-
ible and adaptive communication mechanism among others
through support for time, space, and flow decoupling.

This use of publish/subscribe introduces some issues re-
lated to scoping which can, however, be addressed in a way
that is consistent with the proposed form of the assembly
concept.

The next section introduces the concept of an assem-
bly. Section 3 explains why a programmatic construct cor-
responding to the concept is needed. Section 4 discusses
how to implement something that is both a component and
a connector and describe the architectural prototype of the
chosen approach. Section 5 reviews related work, section 6
addresses the challenges which set the present state of the
art apart from realising the envisioned scenario described
next. Section 7 concludes the paper.

2. The Assembly Concept

This section presents the concept of an assembly through
a prototypical example followed by an elaboration of the
concept. The scenario is used as a running example in the
remainder of this writing. One note on terminology: “com-
ponent” is used in its normal sense, and by “service” is
meantruntime component.

2.1. Example: The SitePack Scenario

As part of the PalCom project [15], workshops have
been conducted workshops with landscape architects, so-
ciologists and computer scientists to discern areas that lend
themselves well to support by pervasive computing [5].

The workshops were conducted with participatory de-
sign [6] techniques such as mock-ups sessions and roleplay.
This speaks for the scenario as a potentially realistic one.

Scenario. Whenever deciding where in the landscape a
wind farm should be placed, landscape architects are hired
to determine its visual impact in the area surrounding a po-
tential location. They need to map what percentage of the
wind farm is visible from which areas.

The first step in doing so is to compute a ZVI (Zone of
Visual Influence) map, where thered zonesare the areas
where the most of the wind farm is visible. Trees and other
obstacles are not taken into account when calculating the
ZVI maps from height maps of the landscape. Therefore
landscape architects have to go to the red zones and take
pictures of the environment to get a feel for the actual visual
impact.

There are often roads running through the red zones, so
the landscape architect drives along these and has to si-
multaneously keep track of when the car enters a red zone,
of driving the car and of keeping an eye on the landscape.
Therefore it would be useful to automatically receive noti-
fications on the location relative to the boundary of the red
zone. That can be done by combining three devices: GPS,
display, and some node holding a ZVI service.

A second task arises, when the red zone is entered the
landscape architect gets out of the car, walks around and
takes pictures of the potential wind farm location. The lo-
cation and perhaps orientation of the camera when taking
these pictures should be recorded along with the pictures.
For that task a purposeful combination of devices would in-
clude a GPS receiver, a Camera, and a cell phone. The
cell phone provides connectivity to a server at the office, to
where the pictures are uploaded after having been indexed
with position information.

We have found many tasks like these two that can be
supported by combining a set of “core” devices.

2.2. An assembly is both component and connector

The notion of assemblies described so far is: some com-
bination of devices or services that is meaningfully consid-
ered a cohesive whole by the user. This does not address
how assemblies are realised in software. A refinement of
the abstraction towards that purpose will be given in this
section.

First consider the running example: That an assembly
must be adynamicconstruct is evident from the scenario
because the constituent devices should not be permanently
bound in the assembly—it should be possible to detach the
cellphone and use it as a regular phone when not taking pic-
tures. Similarly, while driving to and from the photographed
site, the GPS receiver should form part of the navigation
system in the car—another assembly.

The assembly for auto-uploading pictures to a server
(the second combination in the scenario) let us call
it PhotoAssembly, has the roles Camera, Position and
Connectivity. These roles define what types of services are
required to use the assembly. This is shown in figure 1
with a notation inspired by Kristensen [12]. The level of
generality implied by the role-names is intended, since any
compatible services capable of providing position informa-



Figure 1. The PhotoAssembly bound to three (thus con-
stituent) services—the oval shapes. The notation is inspired
by Kristensen [12].

tion could in principle be used in the assembly, and the
same goes for the connectivity and the camera roles. In
the concrete situation of the scenario, the roles are played
by the services residing on the Camera, GPS-receiver and
Cellphone respectively. In this description the assembly ap-
pears an architectural connector, since it binds several com-
ponents together.

The assembly mentioned first in the scenario—the one
that notifies the driving landscape architect of the car’s lo-
cation relative to the red-zones—could in fact be modelled
best as two assemblies: One containing a GPS service on
a node and a ZVI service on a node that has a display and
that can be queried for the distance to the nearest red-zone
and show the current position with the ZVI service. And an-
other assembly, containing the first as well as a service that
can transform textual notifications into speech so the driver
can hear them. This model is shown in figure 2. However
this scheme requires the assembly to be something that can
play a role in a connector: a component.

Figure 2. Using two assemblies to model the setup of the
first scenario.

Figure 3. The relationship between assemblies, compo-
nents and connectors.

This illustrates a key point of this paper: that an assem-
bly is, conceptually, both a component and a connector, see
figure 3. That conjecture requires more rigorous argumenta-
tion than the illustrative example above. To that end several
non-obvious points must be established: (1) That it makes
sense to distinguish the interaction/functionality aspects in
assemblies and use the abstractions component and connec-
tor to adequately capture them (2) that an assembly must
necessarily be both (3) that an assembly by being both does
not, conceptually or by implementation, ignore the point
made in (1). The first two points are addressed below. The
third point is deferred to section 4 which presents how the
construct have been implemented.

Interaction and functionality are distinct. This is a
point that historically has been recurring in many forms.
Components have often been the only implementation
construct—hence we speak of component-based software
rather than component- and connector-based software.
However connectors, which mediate interactions and en-
gender a protocol, deserve their own abstraction [17] and
what exactly they represent has been formalised [2], and
implemented as a first class construct in e.g. ArchJava [1].

Other forms in which the distinction made with compo-
nents and connectors have been argued include computa-
tion/coordination [10], algorithm/interaction [17] and ob-
jects/associations [12]. Further, the formalisms appropri-
ate to each are different: Turing machines [13] underlie
our notion of algorithms, but are incomplete for specify-
ing interactions [20], for which e.g. theπ-calculus was de-
signed [14].

Assemblies abstract both interactions and functionality
An assembly should have both an algorithm and a protocol.
An algorithm is a recipe for realizing some functionality. A
protocol, however, is a set of rules specifying how interac-
tions take place.

Because the assembly must realize a particular behav-
iour of a given combination of services, it often needs an
algorithm. First, not all desired behaviours can be realized



by simply making the constituent services interact—it is in
general not possible to anticipate all future uses of an infor-
mation appliance [18]. Second, even in the cases where the
participation of a service in an assembly can be predeter-
mined, some parts of the realisation of this behaviour may
not properly belong to any of the constituent services. This
latter point is addressed again in the next section.

An assembly must engender a protocol because it binds
together several services so that they interact. The protocol
serve two purposes. It (1) handles the coordination between
the services, and (2) specifies routing of data between them.

This concludes the argument at the conceptual level that
an assembly is both component and connector. We now turn
to a discussion of the consequences this have for their real-
isation in software.

3. Programmatic Representation for Assem-
blies

An assembly should have an explicit programmatic rep-
resentation at runtime and program-time because:

– The definition of an assembly should be localised
Keeping related things together is good software en-
gineering: individual parts of a system should be inter-
nally coherent. The behaviour of an assembly and the
interactions supporting it form a conceptual whole.

– Some information about the assembly does not have
a proper home in any of its constituent servicesThis
is often the case with exception handling. Exceptions
should be handled in the context where they make the
most sense. For instance, if the signal of the GPS re-
ceiver is blocked, this could give rise to an exception.
However, in the context of the photo assembly this
could meaningfully be handled by informing the user.
In another context, such as if the GPS receiver were
on board an autonomous vehicle, the same exception
should be handled in a quite different way, maybe by
halting the vehicle and switching to an auxiliary navi-
gation system.

– Assemblies should be independent of other compo-
nents and connectors at runtimeThe set of services
that play a role in an assembly is likely dynamic. The
responsibility of managing a flow of alternating ser-
vices does not belong with any of the delegate services
as this is a changing set. Instead it belongs to the as-
sembly. Therefore the assembly should have an exis-
tence of its own at runtime, separate from the delegate
services.

– Assemblies can be stored away, and later reactivated
The scenario illustrate that the combination of devices
and their aggregate behaviour should be reusable from
situation to situation. Relative to the scenario, the
PhotoAssembly would be stored on e.g. the camera, re-
maining inactive while the landscape architect is un-
derway in the car, and then activated upon arrival to
the site of the planned wind farm.

Additionally, an explicit representation of assemblies en-
able the use of OO relationships to model and construct
them:

– Assemblies should be specializableOne assembly can
specialise another. For instance, the photo assem-
bly could be formed using a more general assembly,
PictureIndexer, that index pictures with a string of text.
This means that assemblies can be abstract as well,
where abstraction is meant in the traditional sense of
not being instantiable.

– Assemblies should be composableSince an assembly
is a service itself, it can play a role in another assembly.
This is really just standard composition.

4. Prototyping the Assembly Construct

This section describes how the proposed assembly con-
struct have been evaluated. Since it is a programmatic con-
struct, it is evaluated by implementing it and applying it
to the example with thePhotoAssembly. The implementa-
tion is in the form of an architectural prototype [4]. The
prototype has been implemented in the Ruby programming
language [11]. ArchJava [1] was also considered because it
provides language support for connectors. However Ruby
was favoured because it is a dynamically typed language
which is more in correspondence with the dynamic nature
of assemblies, and allows easy simulation of and modifica-
tion to the behaviour of various language mechanisms.

Communication between services is done with pub-
lish/subscribe. Using the publish/subscribe paradigm
means that the devices themselves need not be simulated,
since the boundaries of the services are where distribution is
visible in the programming model: Inside components, nor-
mal procedure calls can be used, but only publish/subscribe
can be used between components. Distribution of com-
ponents is thus transparent, but clearly in a sense differ-
ent from an RPC communication model which attempt to
hide distribution altogether. For that reason devices were
not simulated explicitly, as it would have altered nothing in
the design or implementation of the services in the exam-
ple. The point argued is not that publish/subscribe is appro-
priately the only means of intercomponent communication.
Only that it is appropriate to illustrate what assemblies are
because it is a very basic form of interaction.



An assembly is implemented as a connector, and a com-
ponent. The component is bound permanently to a special
behaviourrole of the connector. This role is special since
(1) its port is responsible for handling contingencies related
to the function of the assembly, (2) it determines where the
assembly is deployed and thus gives form to it and (3) it is
always bound to the assembly. The assembly provides both
ports and roles, and is logically equivalent to what is illus-
trated in figure 4. Note that the figure doesnot illustrate
deployment view, only the logical view. Deployment is in-
tuitively more consistent with the notation in figures 1 and
2, since the behaviour of the assembly is deployed on some
node, and the roles are co-located with the services to which
they are bound. This is shown in figure 5. The type of net-
work connectivity underlying the publish/subscribe primi-
tives used is not shown. We assume the services to be run-
ning in a Palpable Runtime Environment which is currently
being development in the PalCom project; it includes a vir-
tual machine with primitives supporting publish/subscribe.

As a connector the assembly has a set of roles. Each role
acts as a message filter, specifying which publish /subscribe
topics allow a message to pass through. Two patterns of
filtering were found useful: a message is either not men-
tioned in the role, or it is in theIN-set or theOUT-set of
that role. When a topic is in heIN-set of a role, the service
which is bound to that role will only be allowed to receive
messages on that topic when they are published by a ser-
vice that is a member of the same assembly. In the example
of the PhotoAssembly shown in figure 1 thebehaviour role
would have the topicposition in its IN set, because those
coordinates that it obtains from the GPS that is part of the
assembly are the only ones that should end up in the pic-
tures.

Conversely, when a topic is in theOUT-set of a role,
any messages published on that topic by the component
bound to the role will only reach subscribers that are in
the same assembly. In theNotification of figure 2, the
behaviour role would have the notification messages in the
OUT-set, because only the chosen notification medium, the
SpeechGenerator should be used, while still allowing it to be
used by other assemblies.These two filtering-patterns were
sufficient for thePhotoAssembly, and though perhaps not
fine-grained enough in other cases, it illustrates what a role
can be and that is may have some programmatic substance.

To activate an assembly, services must be bound to its
roles; Section 5 outlines approaches for matching services
to assemblies.

5. Related work

Fujii & Suda [9] present an approach to dynamic ser-
vice composition that relies on automatic composition of
services based on a high-level expression of a goal such
as “print out direction from home to restaurant”. This ap-

Figure 4. The logical implementation-relationship between
assemblies, components and connectors. The assembly en-
capsulates its parts, exposing only their “vacant” roles and
ports. The black rectangles represent roles of a connector,
the white are ports of a component.

proach requires an infrastructure to deliver the deducted
service configuration. The assembly approach, conversely,
embrace the highly distributed and ad-hoc nature of per-
vasive and ubiquitous computing, and does not depend on
computationally intensive deductions. An assembly can be
carried on a device, and become active across devices when
its required services are within communication range.

Ponnekanti et al. [16] also recognize the need for sup-
porting dynamic combination of services to e.g. combine a
camera with a printer. They describe ICrafter, a framework
providing infrastructure support for a class of ubiquitous ap-
plications. It supports aggregation through automatic gen-
eration of user interfaces for combinations of services. The
generatorswhich produce the interfaces are generic soft-
ware entities relying on general programmatic interfaces
that the constituent services implement. The assembly ap-
proach is similar because it address the same general prob-
lem of combining services, but it applies to a broader class
of ubiquitous computing systems because assemblies do
not assume a supporting infrastructure outside of the con-
stituent devices.

Emerging web service orchestration approaches such as
Business Process Execution Language for Web Services
(BPEL4WS) [3] provides abstractions for defining service
interaction and composition in Service-Oriented Architec-
tures (SOAs). Being a SOA concept web service orches-
tration typically works on higher-level services than do as-
semblies. Typically, approaches such as BPEL4WS require
a central process management component, but conceptually
and with respect to implementation the concept of explicit
and distributed assemblies could also be relevant in this con-
text.

The central purpose of the Java-based Jini frame-
work [19] is to create “federations” of services that may



Figure 5. A deployment diagram corresponding to figure 1.
The associations between the assembly and its roles are of
the same type as those shown in figure 4 and thus encapsu-
lated in the connector part of the assembly.

jointly implement functionality. As such Jini is suitable
for many pervasive and ubiquitous computing applications.
However, Jini does not have an explicit and dynamic repre-
sentation of federations at runtime. Incorporating the idea
of assemblies into Jini might be a possibility.

6. Challenges and Future Work

Up until now our line of argumentat has been presented
in a perhaps optimistic spirit. However, the following chal-
lenges still need to be adressed:

Handling Heterogeneity The scenario described initially
cannot be realised with ease using todays devices, the hard-
and software of which would have to be prepared for in-
teraction with other devices. The current trend goes toward
that with e.g. the increasing support for Bluetooth in various
devices. Regarding the heterogeneity of software, it is clear
that components on these devices are likely to be written in
different languages, currently perhaps .NET or Java.

Gelernter & Carriero [10] point out that the separation of
interaction (coordination) from computation is favourable
from this point of view, since a standardisation can thus be
limited to a coordination language which is largely orthog-
onal to a computation language [10]. Their scheme is that
any intercomponent-communication could be achieved us-
ing a coordination language (e.g. Linda) plugged into the
language used to program algorithms. That idea matches
assemblies well, and in the architectural prototype outlined
earlier, publish/subscribe is used instead of Linda, which
is achieved by adding (implementing) the simple primitives
publish(msg)andsubscribe(msg)to Ruby.

Dependence on service discoveryOne of the things not
adressed in the prototype implementation is how the ser-

vices are found and subsequently bound to an assembly.
This clearly relies on service discovery (SD). The assump-
tions currently made about SD is that there exists some way
of specifying a service such that certain assumptions hold
about how it can be used. Therefore discussion oftyping in
relation to assemblies has been adressed only implicitly.

Further empirical exploration of the assembly concept
A final concern to be adressed in future work is evaluat-
ing and exploring the assembly construct further. First, by
applying it to more varied use-situations to establish its gen-
eral applicability/limitations. Second, using it for proto-
types that are tested with real users, rather than the architec-
tural prototype taken as a first step. Issues at the use-level
include: how may services be shared appropriately and dy-
namically seen from a social and interaction perspective?
How autonomous are assemblies to be in use? What is the
relationship between physical assemblies and the software
constructs supporting them?

7. Conclusion

The notion of an assembly from [15] was summarised. It
was refined toward a software engineering understanding of
its meaning: that it should be both a component and a con-
nector, and have an explicit representation at runtime and
at compile time. A scheme for its implementation was pre-
sented, and a brief description of an architectural prototype
of the concept was given. Finally, the assembly approach
was related to existing approaches documented in littera-
ture, and the challenges and future work of the construct
was presented.

8. Acknowledgements

The research reported in this paper was partially funded
by ISIS Katrinebjerg and by the PalCom IST project. We
thank Monika B̈uscher for organizing the workshop on as-
semblies and for commenting on this paper. Henrik Bær-
bak Christensen for discussions and comments on earlier
drafts of this paper. Jonas Lövgren, also for commenting
on the paper, and Erik Ernst, Jakob Bardram, Peter Ørbæk,
Michael Christensen and the rest of the participants in the
PalCom project for discussions of the assembly concept.

References

1. J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin.
Language support for connector abstractions. In
L. Cardelli, editor, Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP’03), volume 2743 of Lecture Notes in



Computer Science, pages 74–102. Springer Verlag,
July 2003.

2. R. Allen and D. Garlan. A formal basis for architectural
connection.ACM Transactions on Software Engineer-
ing and Methodology, 6(3):213–249, 1997.

3. T. Andres, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness process execution language for web services. ver-
sion 1.1. Technical report, BPEL4WS Partners, May
2003. Available from ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

4. J. Bardram, H. B. Christensen, and K. M. Hansen. Ar-
chitectural prototyping: An approach for grounding ar-
chitectural design and learning. In J. Magee, C. Szyper-
ski, and J. Bosch, editors,Proceedings of the Fourth
working IEEE/IFIP Conference on Software Architec-
ture (WICSA’04), pages 15–25. IEEE Computer Soci-
ety, 2004.

5. M. Büscher. Vision in motion.Environment and Plan-
ning A, 2005? (forthcomming).

6. P. Ehn and M. Kyng. Cardboard computers: Mockingit-
up or hands-on the future. In J. Greenbaum and
M. Kyng, editors,Design at Work: Cooperative De-
sign of Computer Systems, pages 169–195. Lawrence
Erlbaum Associates, 1991.

7. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.ACM
Computing Surveys, 35(2):114–131, June 2003.

8. M. W. Eysenck and M. T. Keane.Cognitive Psychol-
ogy. Psychology Press, Tayler & Francis Group, 27
Church Road, Hove, East Sussex BN3 2FA,4th edi-
tion, 2000.

9. K. Fujii and T. Suda. Dynamic service composition us-
ing semantic information. InProceedings of the 2nd
International Conference on Service Oriented Comput-
ing, New York, New York, U.S.A, Nov. 2004. ACM.

10. D. Gelernter and N. Carriero. Coordination langages
and their significance.Communications of the ACM,
35(2), 1992.

11. A. Hunt and D. Thomas.Programming Ruby: The
Pragmatic Programmers Guide. Addison-Wesley
Longman, 1 edition, 2001. Available from http://www.
ruby-lang.org.

12. B. B. Kristensen. Associative modeling and program-
ming. In Proceedings of the 8th International Confer-
ence on Object-Oriented Information Systems, Mont-
pellier, France, 2002. Springer-Verlag.

13. H. S. Lewis and C. H. Papadimitriou.Elements of the
theory of computation. Prentice-Hall, 2 edition, 1998.

14. R. Milner. Elements of interaction: Turing award lec-
ture. Communications of the ACM, 36(1):78–89, Jan.
1993.

15. Palpable computing: A new perspective on ambient
computing. annex i: Description of work.

16. S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and
T. Winograd. ICrafter: a service framework for ubiq-
uitous computing environments. InProceedings of
UbiComp 2001, volume 2201 ofLNCS, pages 56–75.
Springer-Verlag, 2001.

17. M. Shaw. Procedure calls are the assembly language
of software interconnection: Connectors deserve first-
class status. InProceedings of Workshop on Studies of
Software Design, Lecture Notes in Computer Science.
Springer-Verlag, 1993.

18. L. A. Suchman. Practice-based design of information
systems: Notes from the hyperdeveloped world.The
Information Society, 18(2):139–144, 2002.

19. SUN. Jini technology core platform specification.
version 2.0. Technical report, SUN Microsystems,
2003. Available from http://www.sun.com/software/
jini/specs/core20.pdf.

20. P. Wegner and E. Eberback. New models of computa-
tion. The Computer Journal, 47(3):4–9, 2004.

21. M. Weiser. The computer for the 21st century.Scientific
American, 13(2):94–10, Sept. 1991.

22. S. Wong, S. Vassiliadis, and S. Cotofana. Embedded
processors: Characteristics and trends. Technical re-
port, Computer Engineering Laboratory, Delft Univer-
sity of Technology, 2004.


